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Abstract-The estimation of the surface temperature or heat flux density utilizing a measured temperature 
history inside a heat-conducting solid is called the inverse heat conduction problem. This problem becomes 
nonlinear if the thermal properties are temperature-dependent. A new finite-difference method is given. 
It is based in part upon the concepts of a general technique for solving inverse problems called nonlinear 
estimation. 

The method (or family of methods) estimates the components of the heat flux one at a time and thus, may 
be considered an on-line method. Another method is outlined for which all of the components of the heat 
flux are found simultaneously. 

As suggested by the developments in nonlinear estimation, the sensitivity coefficients can be utilized to 
gain insight into these methods. The sensitivity coefficients help indicate that the on-line method requires 
“future” temperatures when small time steps are to be used. 

Several examples of the use of the on-line method are given. These examples are for cases with non-exact 
data. The results demonstrate a method that is rather remarkabie in its ability to extract information about 
the surface condition from experimental measurements that lag and are damped compared to the surface 

condition. 

~OME~CLA~RE time index for t and T, 
specific heat ; ; time scale for 4 ; 
distance from heated surface to tempera- p, density ; 
ture sensor ; dimensionless time ; 
sum of squares function, equation (3); 5, sensitivity coefficient, equation (8b). 
upper limit for F, equation (6) ; 
thermal conductivity ; 
thickness of solid ; INTBODUCTION 

integer, see equation (5a) ; IN EVALUATING new heat-shield materials, testing 
subscript for q indicating the last known of rocket nozzles and developing transient 

4; calorimeters, it is sometimes necessary to calcu- 
coefficient in energy equation, (1) ; late the transient surface heat flux and the surface 
heat flux density at x = 0; tem~rature from a temperature history meas- 
volume heat source ; ured at some location inside the body. In dis- 
small integer; if m = 1, r - 1 = no. of tinction to usual transient heat conduction or 
“future” temperatures ; diffusion problems this one has been termed the 
time ; inverse problem. This is because the conditions 
temperature ; are not specified at both -boundaries. If the 
coordinate ; thermal properties are functions of temperatures 
experimental temperature ; as considered in this paper, the inverse problem 
thermal diffusivity ; becomes nonlinear. 
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One of the first papers on this subject was 
written by Stolz [l]. His procedure is unstable 
if the time intervals are made too small. Small 
time steps in the calculations are needed to 
obtain more information about the surface 
conditions. Much smaller time steps were found 
by Beck to be possible by utilizing least squares 
[2]. Other papers using least squares in quite 
different ways were written by Frank [3] and 
Burggraf [4]. Sparrow et al. [5] used another 
approach. Using different approximations each 
of these researchers except Burggraf and Frank 
found the average heat flux for a succession of 
short intervals. Burggraf cleverly found the 
exact solution for the instantaneous surface 
heat flux for given continuous temperature and 
heat flux histories at a given internal point. 
When Burggrafs equation is utilized with dis- 
crete or experimental data, the results are also 
approximate. 

Frank and Davies [6] assume an analytical 
form for the time-variations of the surface heat 
flux for the duration of the experiment. These 
investigators do not report any problems with 
stability, but their methods are not designed for 
determining heat flux curves which may be 
discontinuous. 

None of these papers presents a method which 
can conveniently heat a composite body with 
temperature-variable thermal conductivity and 
specific heat. An objective of this paper is to 
present a method suitable for use with a digital 
computer for treating such a body. In [7] a 
method for the same problem is discussed which 
builds on the ideas in [2]. In both [2] and [7] 
the methods are not developed using the ideas 
of nonlinear estimation to which they are in fact 
related. Another objective then is to derive the 
methods using nonlinear estimation in order to 
demonstrate the applicability of nonlinear esti- 
mation to determining time-dependent quanti- 
ties at a boundary. By incorporating this prob- 
lem into the framework of nonlinear estimation, 
the analytical solution of this problem can be 
improved. Furthermore, the similar problems 
of determining the heat-transfer coefficient, 

thermal contact conductance, mass-transfer 
coefficient, etc., can be treated in an almost 
identical manner. 

Nonlinear estimation is not well-known by 
mechanical engineers. It is presently being 
actively developed by men of diverse back- 
grounds who seem sometimes unaware of the 
work of each other. A great deal has been con- 
tributed by control and chemical engineers, 
mathematicians and statisticians. Related to 
nonlinear estimation are terms such as non- 
linear least squares, optimization, identification, 
filtering, quasilinearization and invariant im- 
bedding. 

VARIOUS METHODS OF SOLUTION 

The linear inverse problem in conduction can 
be solved using an exact method [4], integral 
method [l, 2, 51 or a finite-difference method 
[3, 6, 71. The only method sufficiently powerful 
to solve the general nonlinear problem appears 
to be the latter; hence, the discussion will 
emphasize this method although the basic 
concepts can be applied to the integral method. 

One can use (a) a step-by-step method to 
calculate the heat flux q-distribution one com- 
ponent at a time [ 1,2,4,5,7,8] or (b) obtain the 
complete q-distribution simultaneously at the 
end of the procedure [3, 61. The relative merits 
of each is discussed further in later sections. 

For any method given above except in [4] an 
analytical form for the time-variation of q must 
be chosen. This choice is particularly critical for 
case (b). Frank [3] suggested a polynomial 
approximation of kth degree in time for q. 
Polynomials have the advantage that the com- 
putational procedure is relatively simple. Severe 
disadvantages of polynomials include their 
inability “to take on sharp bends followed by 
relatively flat behavior” and, as the degree of a 
polynomial increases, they are frequently “diffi- 
cult to evaluate, i.e. being numerically unstable” 
[9]. Flat bends followed by flat behavior are 
relatively common for such situations typified 
by starting and stopping a plasma arc heat 
source. Davies [6] uses rather a complicated 
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form for 4 involving error functions and nine 
unknown coefficients. His form is difficult to 
solve and may well have some of the disadvant- 
ages of Frank’s method. 

The determination of the heat flux simul- 
taneously at the completion of a calculation, 
case (b), need not be restricted to functions 
which are continuous over the duration of the 
experiment. The q-curve could be approximated 
by an array of values of 4, each corresponding to 
different times, for example. 

PROBLEM DICTION 

The heat-conduction equation can be general- 
ized as 

-P;-Q. (1) 

The last two terms on the right-hand side of 
equation (1) relate respectively to a fluid flowing 
through the solid and to the rate of production 
of internal energy per unit volume. If a gas is 
traveling from the rear surface (x = L, Fig. 1) 

9 
c 

FIG. 1. Geometry of heated body. 

toward the heated surface with a velocity Y, 
density pB and specific heat cpe, then P is equal 
to pecpau. The quantities k, cp, P and Q can be 
temperature- and space-va~able. 

The problem is to calculate the heat flux 
q(0, t) given the temperature history at x = E, 
Fig. 1. For convenience assume the boundary at 
x = L is insulated ; any other known boundary 
condition could be used, however. Mathematic- 
ally the boundary and initial conditions are 

7V, 0 = Y(t), (2a) 

WL, 4 o 

-T&---= 9 CW 

T(x, 0) = T&x). (24 
The temperatures Y(t) and q(x) are known. The 
unknown surface heat flux q(O, t) and surface 
temperature T(O, t) are simultaneously found 
while calculating the temperature distribution 
in the body. 

The numerical solution of equations (1) and 
(2) can be accomplished by using a number of 
finite-difference approximations. A backward- 
difference formulation is given in [7]. See also 
Ames [lo]. The problem from x = E to x = L 
can be solved in a strai~tforw~d manner 
because the boundary conditions are known at 
each boundary. The solution of the complete 
problem from x = 0 to L cannot be readily 
obtained because the boundary condition is not 
given at x = 0 but rather an interior temperature 
history is given ; because the boundary condition 
is to be determined, the problem is the inverse of 
the usual one. 

Difliculties arise in determining the surface 
heat flux or temperature from the physics of the 
problem. That is, the temperature response at 
any interior location is damped and delayed 
(in effect) with respect to the heated surface [7]. 
As one seeks to determine the structure of 
q(0, t) more finely (i.e. using smaller time incre- 
ments), the effect of the physics is to make the 
calculation more sensitive to errors. The exact 
solution of Burggraf for the linear case can be 
used to show that as the time steps are made 
smaller, higher and higher orders of time 
derivatives of the measured temperature Y(t) 
and of the heat flux at x = E become dominant. 
Note that these derivatives must be taken for 
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discrete ex~rimen~lly measured data; this can 
only be approximated by replacing the deriva- 
tives by differences. 

A limit on the minimum size of the time incre- 
ments is sometimes caused by the stability of 
the numerical procedure. Using some pro- 
cedures, for example [l], this minimum per- 
missible time step may be too large to extract 
all the useful information out of the data. 
Stable procedures can be devised, however, to 
permit passing to even smaller time steps. Since 
the info~ation contains in the data is finite, 
it is not necessary to present a procedure which 
is stable as the time steps go to zero. 

FIG. 2. Approximation of heat flux by discrete values of q. 

It can be readily verified from the Burggraf 
solution or the discussion in [7] that the heat 
flux at the instant t is dependent upon tempera- 
tures at x = E at times greater than t. Hence, in 
determining q(O, t), any effective procedure 
would utilim temperatures at times greater than 
t. Nonlinear estimation permits one to do this 
in an effective manner. 

~O~L~E~ ~S~ATIO~ PROCEDURE 
FOR SINGLE q 

In the nonlinear estimation procedure one 
minimizes the sum of squares function 

Qii) = it1 fTv+i - q+iY (3) 

with respect to some parameters describing 
q(O, t). Rather than approximating q(O, t) as a 
function continuous in time such as a power 
series, 4 will be represented by a vector of 
elements g, (ql, q2, . . . , qNf which is more 
flexible and powerful. The simplest way to 
approximate q(0, t) with these 4” is to let each 
one represent a step; that is 

q(O,t)=q. for 13~._~<t<B,. (4) 

Figure 2 shows a typical q(O, t) approximated 
with some q,,. The Y,,, values are measured 
temperatures at (E, t,+J. The temperature 
T,+i is calculated using a finite difference 
solution for equation (1) with appropriate 
boundary and initial conditions. (The method of 
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determining the boundary condition at x = 0 
is discussed below.) I;;+i is also for time t,+i and 
position x = E. 

The subscripts on 4 and T (or Y) do not have 
the same meaning although both refer to time. 
A reason for this is that one might decide to 
calculate fewer values for c.I (i.e. N) than the 
number of temperature measurements. That is, 
the time steps for 3; Y and 4 are respectively 
At, At and A0 which are related by 

A0 = mAt, m is an integer. Pa) 

Thus, 0, and t, are referring to the same time if 

mM=rp W 

(Actually a time step smaller than At might be 
used for improving the accuracy in calculating 
T, but only those T-values occurring at times 
at which Y-values are available would be 
introduced into the sum of squares.) For the 
special case of m = l-same number of qR’s as 
T,‘s-(5b) gives q = M. Figure 3 shows q+i 
as a unction of Q + i ; also shown in an n axis 
for m = 2. 

The following discussion in this section refers 
to determining one qn at a time. Assume that 

41,42,..., qM are known. In (3) let 

I = mr (6) 

where I is some small integer like 1, 2, 3 or 4. 
The objective is to calculate qM+l using temp- 
eratures T,+l, Tv+2, . . . , TV+, (which are pro- 
duced during the time interval associated with 
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FIG. 3. Temperatures Tq+i shown as a function of c,,+~ and 
0, for m = 2. 

qM+l) plus the temperatures Tq+,+l, . . . , T,,,. 
The latter temperatures might be called “future” 
temperatures. 

For temperature-variable properties, the 
problem of determining qM+ 1 is nonlinear, but 
it can be solved by using iteration with a linear 
approximation. A key assumption used tem- 
porarily is to let 

4bf+2 = 4A4+3 = a.* = hf+r = 4hf+1 (7) 

which sets some future q’s equal to qM+ 1. (This 
assumption is examined below.) Then for the 
Ith iteration the Taylor series approximation 

Ti+i x T!,;: + p(qL+I - qfr;:l) @a) 
Mfl 

is used. This expression is exact (hence, iteration 
is not needed) if the temperature problem is 
linear. The 1 superscript is an index related to 
the number of iterations. For 1 = 0, an estimate 
of qL+ 1 is the converged value of qw For q: one 
can use the value of unity. 

The partial derivative in @a) is frequently 
called a sensitivity coefficient. It can be calcu- 
lated using 

&-1 = WI:: 

-GL 

~ T,+i(&:l(l + 6)) - ‘Tq+i(&-‘l) 

=I&;: 1 
(W 

where E is some small number such as OGOl. For 
convenience, the notation for the sensitivity 
coefficient &- ’ given in (8b) does not contain 
either A4 or q; it is true, however, that 4i-l is 
independent of M (or q) and I for the linear 
problem. 

Introducing (8a) in (3), differentiating with 
respect to qfw+l gives for the correction in 

c&f+1 

c (r,+i - Tf;,f) 41-l 
vqL+l = i=l 

g1 w lJ2 

(94 

where 

Nf+, = &+1 - d& (W 

If the thermal properties are temperature- 
independent (linear problem), the maximum 
value of 1 is unity ; for a nonlinear problem 
frequently 1 = 1 or 2 would be satisfactory. 
More generally, the iteration on 1 using (9a) 
could continue until, say 

v&+ 1 
I_1 < 0405. (94 
qhf+1 

The iterative use of (9a) result in the calculation 
of qu+I which then provides a conventional 
boundary condition at x = 0 for 6, < t < eM+ 1 

Several special cases can be obtained from 
(9a). One such case is for m = 1; thus, 

A0 = At (9d) 

and the subscripts of q and T when equal refer 
to the same instant. Then (9a) becomes 

jl( YM+i - r$&) &’ 

au+, = 

. igl b#J- lJ2 

(10) 

This result is analogous to equation (9a) in 
[7]. For I = 1 (no future temperatures used), 
least squares would not have been needed. For 
t > 1, future temperatures are used. 
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Another special case obtained from (9a) is 
for r = 1 and thus, I = m. In this case no 
“future” temperatures are used but the above 
procedure is needed to obtain the result if 
m > 1. The expression obtained in this case is 
analogous to equation (6) of [ 111 which gives a 
method for determining the heat-transfer co- 
efficient or contact conductance from transient 
temperatures in a solid. The time interval 
associated with q,, which is A$ should be larger 
when no future temperatures are used than when 
r = 2or3. 

If several thermocouples are used to calculate 
the surface heat flux, then exactly the same 
procedure may be followed. The only difference 
would be that the summation in (9a) would be 
replaced by a double summation over time and 
thermocouples. 

A careful investigation of the sensitivity 
coefficients often can aid in providing insight 
into the problem of dete~ining parameters 
using nonlinear estimation. For this reason pi 
will be examined. One of the desired characteris- 
tics of a sensitivity coefficient in parameter 
estimation problems is that the magnitude of 
the coefficient be as large as possible. If there 
are two or more parameters to be found at one 
time, then in addition the sensitivity coefficients 
should be as uncorrelated as possible [ 11. 

For convenience in this analysis relating to 
the sensitivity coeflicients, the properties will 
be assumed to be constant. Using the method 
given in [ 111 it can be shown that 

where G(x, t) is the temperature rise in a body 
due to a unit step change in q(0, t) at time t, 
Equation (11) applies quite generally ; it is valid 
for any one-dimensional problem (with P and 
Q = 0 and temperature-independent k and c) 
including finite and semi-infinite bodies, radial 
and spherical geometries, and composite bodies 
arranged to permit one-dimensional heat flow. 

To utifiz (11) consider a homogeneous, plane 
one-dimensional body heated at x = 0 and 

insulated at x = L. The solution for a step 
change in q is well known [ 121 and is shown in 
Fig. 4. Observe the character of the curve for 
x = 0; the sensitivity coefticient immediately 
begins to rise at ti - t,, = 0. Hence, thermo- 
couples placed at the surface are immediately 
responsive to changes in the surface heat flux. 

FIG. 4. Dimensionless sensitivity coefficients for step change 
in q as a function of time. 

On the other hand, for any interior location 
there is a lag in the response of #T. It is clear that 
if the sensitivity coefficients are very small, as 
for x/L = 1 for 

w3 

that from (8a) Tq+i is relatively independent of 
qM+ 1 and further that difficulties are going to 
arise using (9a). These difficulties probably will 
manifest themselves as oscillations in the cal- 
culation. 

To be more specific, (9a) for this case can be 
written for m = 1 

(13) 
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Let Ar = 0.05 be the time interval for qM+ I and 
let m = 1. Then &T = O+IOO2, (6; = O-0078 and 
tp$ = O-0294 for qL/k = 1 F” and x/L = 1. 
Since (br is much smaller than (62 or #g, much 
more information relative to qM+ 1 (which is 
applied, in terms of Fig. 4, from z = 0 to AZ) is 
obtained after r = AZ than before this time. In 
Fig. 5 shown by the dots are some values of 
4: for AT = 0.050.1 and 0.2 for this case. 

0.71 ’ ---- 

0123456 

FIG. 5. Dimensionbss sensitivity coefficients as a function of 
the index i for various values of Az. Dots are for step change 

in q and crosses are for q shown in inset. 

Some insight into the validity of the temporary 
assumption of constant q given by (7) can also 
be obtained from Fig. 5. Suppose rather than (7) 
one lets temporarily 

(lild+Z=q~+3=...=q~+r=0. (14) 

The analysis for qM+ I would proceed exactly in 
the same as above to obtain (9a) and (13). The 
only difference would be in the value of the 
sensitivity coefficient, c#$. For this assumption 
4: is proportional to the partial derivative of T 
with respect to a unit q of the shape and duration 
shown in the inset of Fig. 5. The &Vs for this 
case are shown by the crosses in Fig. 5. Note 
that in each case, (br is identical in magnitude for 
both assumptions, (7) or (14). For other #t’s the 
values for a given AZ tend to be close together 
for small i’s coupled with small values of AZ. 

Now the nume~c~ procedure cu~inat~g in 
(9a) and (13) is developed especially for small 
AZ’S and is intended for use with relatively small 
values of i or more appropriately r. In Table 1 
under the constant q column, I values are given 
which are recommended on the basis that the 
assumptions given by (7) or (14) yield about the 
same (PT values and thus qn’s. 

Table 1. Recommended r values for constant and linear 9 
assurnp~~o~ for measurements at the i~u~at~ surface of a 

plane waif 

AT Const. q Linear q 

0.05 3 4 
0.1 2 4 
@2 1 3 
0.4 0 

Linear q 
The above analysis for constant q over At can 

be modified to a linear q assumption. Let q 

temporarily for Bill c t < t&+, be given by 

e 
q=qM M+l-t 

e At+1 
-0 +qM+le 

t - 6, 

hi Mfl 
_e * (15) 

M 

This assumption is analogous to that given by 
equation (7). Note that q = qM at t = 0, and 

4 = 4M+l at t = e,+,. In this case one assumes 
that qM is known and qM+ l is to be found. With 
only a difference in the values of the Ifii)s, one 
can derive an identical expression to (9a) for 
this case. 

For the q-condition given by (15) one can 
again derive (11) for the restriction given 
immediately below the latter equation ; the only 
difference is that now GCc, tq+i - t,,) represents 
the temperature rise for a q which is 7ero at t, 
and then increases linearly with time and reaches 
unity at t,,+m Figure 6 shows some sensitivity 
coefficients for this case. A comparison of these 
values with those in Fig. 5 which are for the 
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constant q assumption shows that the “linear” 
di’S are smaller for several time steps ; in fact 
for AZ = O-05 the “constant” 4:‘s are larger 
until i = 4. This means that the number of 
“future” temperatures should always be greater 
for linear q than the constant q assumption. In 

0.6. 

0.5 

@I* 
9nr+, L/k 

0.3 

0.1 O’I~ 0.2 

:;:;) AT-0.2 0.1 

0.05 i 

0 
0 I 2 3 4 5 6 

FIG. 6. Sensitivity coefficients for case of linear variation of 
q with time. 

Table 1 are given some r-values that the linear q 
case must reach in order to equal or exceed the 
4; values for the constant q assumption. If the 
same r-values are used for both approximations 
one finds that the linear q results tend to 
oscillate more than the constant q results. 
Depending upon the accuracy of the data, it 
might be necessary to use larger T values than 
given in Table 1. This is required when the data 
is rather inaccurate and is not “smooth”. This 
is discussed further in connection with the 
examples. Also, it is sometimes necessary to use 
r > 1 when the thermocouple is located at the 
heated surface (at/x’ -+ co) in order to reduce 
the oscillations in the values of q calculated. 
Then the least squares procedure provides a 
linear filter (when the problem is linear) [ 131. 

NONLINEAR ESTIMATION PROCEDURE FOR 

SIMULTANEOUS DETERMINATION OF q(t) 

The procedure for the simultaneous deter- 
mination of all the q. values describing q(t) is 

similar to that for one q.. One minimizes 

where I now is 

I=mN Wb) 

and N is the number of q values and m is defined 
by (5a). 1;: is approximated analogous to (8a) and 
the method can be developed directly. Since the 
resulting expression is not recommended, the 
details are not given. A close examination of this 
method indicates that the computer time usually 
will be much greater than the recommended 
method and that severe stability problems might 
be encountered. Further discussion of this 
method is available in an expanded version of 
this paper available from the author. 

EXAMPLES 

In the two examples the Crank-Nicolson 
finite-difference approximation is used since it 
is quite accurate. For results with other tinite- 
difference approximations see [7]. Also, in both 
examples, the time step for the data (At) and for 
the heat flux density (A@ are equal, i.e. m = 1 
in equation (5). In both cases the properties 
were assumed to be constant and hence the 
problems are linear; for these cases similar 
results would be otained for temperature- 
variable thermal properties although the com- 
puter time would increase. The computation 
time depends upon the number of future time 
steps (r - 1, for m = 1) ; the computer time will 
be approximately 2r + 1 times that for a known 
boundary condition. The time for most of these 
cases is about 10-20 s of CDC 3600 time. 

“Exact” data for triangular heat flux 
The same case of heat flux triangular in shape 

considered in [7] will be considered here. 
Unfortunately, the results in [7] show a small 
lag due to a programming error. 

A plate of thickness L is heated at x = 0 and 
insulated at x = L. The exact temperatures at 
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these locations are shown in Fig. 7. The heat 
flux is linear from r = CC@.? = 0 to 06, 

4Of = YnT 

where qa is a constant; 4 is shown as the solid 
line in Fig. 8. 

A number of calculations have been per- 
formed for this case using as the input the temp- 
erature history at the insulated surface. In order 

O5 y------- 1 

r 

FIG. 7. Temp~at~es at heated surface and insulated surface 
for finite plate heated by t~angu~ar heat flux. 

‘i -II i. -. _ I_ _-_J_-L _-. 

0 O-2 O-4 0.6 03 1.0 I.2 
r 

FIG. 8. G&x&ed heat flux for data used at x& = 1 with 
AT = 0@4. Calculation performed with Ar = 04X2 and one 

future tem~rature (r = 2) used. 

to simulate an ex~rimenta~ case with measure- 
ment errors, the temperatures are not introduced 
as exact numbers ; instead the temperatures are 
truncated at three decimal places with the 
maximum temperature being 0.34 as shown in 
Fig. 7. The errors in the temperatures then vary 
from -0Wl to 0 or -@3 to 0 per cent of the 
maximum temperature rise. The temperatures 
are introduced at AZ = co%@ = O-04 intervals, 
and the first five T’s corresponding to 0, 0434, 
008,. . . are 0.0, 0.0, 0.0, O-0 and OGOl. The exact 
tem~ratu~ at r = 0.12 is 0.~374 whereas 00 
is used ; thus the error in the tem~rature at 
that time is - 100 per cent of the true tempera- 
ture. Hence, for the early times the errors in the 
temperature data seem to be relatively large. 

For this example the results were not sensitive 
to the number of spatial nodes greater than 20 or 
calculational time steps smaller than OG4. The 
number of future temperatures was very import- 
ant with no future temperatures being unstable 
(r = I), one future temperature (t = 2) quite 
oscillatory (as shown by Fig. 81, and two and 
three future tem~ratures (r = 3, 4) quite satis- 
factory as shown in Fig. 9, It appears that three 

r 

FIG. 9. calculated heat flux using two and three future 
tem~ratu~s at x/L = 1 with data given at AT = OW. 
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future tem~rat~es are better than two. It is 
rather remarkable that the heat flux for the first 
interval (plotted at A@) is as accurate as it is 
using the first three future temperatures @O, 0.0 
and O$lOl which are quite inaccurate. 

The heated surface temperature is less oscil- 
latory and more accurate than the surface heat 
flux. This is illustrated by Fig. 10 showing the 

0.2 0.4 0.6 o-8 

FIG. 10. Calculated surface temT&zature (x = 0) using one 
future temperature at x/L. = 1 with data given at Ar = OG4. 

surface temperature calculated with one future 
temperature (r = 2) and Fig. 8 showing the 
associated g(t). 

Experimenta! case 
An experiment has been run with a copper 

block initially at 439°K and an aluminium 
block at 297°K. The blocks were suddenly 
brought into intimate contact by a hydraulic 
system. A thin film of water was placed initially 
on the ~~inium surface to improve the contact 
between the blocks. 

The measured temperatures are shown in 
Fig. 11. Thermocouples are located at O+IO317, 
OXlO and 0.0317 meters from the heated 
surface of the aluminium block and ON)317 
meter from the surface in the copper block. 
Measurements were made at 0.2 s intervals. In 
the aluminium block the dimensionless numbers 
aAt/E2, where At = 0.2 second and E is 0403 17, 
040635 and 0.0317 meters, are equal to about 
1.0, O-25 and 0.01. Because O-01 is so small, 
measurements were used at At = O-6 and are so 

425 

. 0.00317m from interface in copper block 

l . 
l .**********o.................,.. 

0;00317m from interface in oluminium block 

I I / I I / I / 1 

0 1 2 3 4 5 6 7 8 

Time, s 

FOG. 11. Experimental temperature data for copper and 
aluminium blocks in contact. 
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shown in Fig. 11; this gave tit/E2 x 0.03 which 
is still a little small. 

It should be stated that the analytical validity 
of this method should not be judged mainly on 
the results of this example because these depend 
upon the experimental techniques, values of 
thermal properties, etc. On the other hand a 
satisfactory technique must provide the capa- 
bility of treating data of reasonable accuracy. 

Depicted in Fig. 12 are the q’s calculated for 
the aluminium block. The agreement between 
the results from the three thermocouples is very 
good. The OGO317 m thermocouple (aAt/E’ x 1) 
should not theoretically need any future temp- 
eratures. The results for this case are shown as 
dots in Fig. 12 and the results for one future 
temperature by crosses. The former case tends 
to be more “rough” but might give more accurate 
results near 0.9 s. The 040635 m thermocouple 
(aAt/E2 x 0.25) with one future temperature is 
shown by the triangles in Fig. 12 and gives 
results very close to those for the first thermo- 
couple. 

The instant the specimens come together is 
not known but may be between O-3 and 0.5 s. 

If the contact were perfect, the heat flux would go 
to infinity at the instant of contact and then 
decrease rapidly. This is approximated to a 
limited extent. 

For a rapid variation of the heat flux density 
such as near 0.9 s, the time intervals for the 
temperature measurements should be small 
compared to the period of the variation. 
Perhaps the 040317 m thermocouple could 
have had smaller time steps and then yielded 
more detail. The q-results obtained from the 
0.0317 m thermocouple illustrate the impossi- 
bility of accurately calculating the surface flux 
at times when the time steps for q are on the 
same order as the period of a rapid variation in 
q. See the curve in Fig. 12 with the open circles 
which is for At = O-6 and three future tempera- 
tures. The time step A8 for this case cannot be 
reduced to O-2 s without using an excessive 
number of future temperatures. 

The heat flux entering the aluminium block 
should be that leaving the copper block even 
though there is a resistance to heat flow at the 
interface. This is verified experimentally by 
comparing q shown in Fig. 13 (which is for the 

3 Aluminium block 

(D l O-00317m thermocouple, Ofuture temperatures (r=l) 

b - + 0.00317m thermocouple, I future temperature (I q 2) 
x A 0*00635m thermocouple, I future temperature (r=3) 

“E 0 0*0317m thermocouple, 3 future temperotures (r=4) 

22 

0 

Time, s 

FIG. 12. Calculated heat flux using different thermocouples 
in the aluminium block. 
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-3- * 

Copper block 
@00317m thermocouple 
0 future temperatures (I = I) 

j / , , ! ,, 

3 4 5 6 7 8 

Time, s 

FIG. 13. Calculated heat flux using temperatures in copper 
block. 

copper block) with the q’s of Fig. 12. No future 
temperatures are used in Fig. 13, and none are 
required from the value of c&JE2 x 2; some of 
the roughness of the q-curve would be removed 
with one future temperature, however. 

SUMMARY AND CONCLUSIONS 

A new numerical different method is given 
for the nonlinear inverse heat conduction 
problem. It utilizes the concepts of non-linear 
estimation. This method may be considered an 
on-line method since the components of the 
heat flux are estimated one at a time. A second 
method is suggested for which all the components 
of q are found simultaneously. 

The sensitivity coefficients can be used to 
gain insight into these methods. In particular, 
the sentivity coefficients help indicate that the 
method for determining one q, at a time requires 
“future” temperatures and further give some 
insight into the number of future temperatures 
required. 

Ex~ination of the two methods indicates 
that the single-q method is generally superior. 
This is significant because several researchers 

have suggested using some modification of 
determining the complete q-curve at one time. 

In contrast with many previous solutions of 
the inverse problem, the present analysis clearly 
demonstrates the capability to treat experimental 
data. This is demonstrated by two examples, 
one for which the approximate data was 
generated analytically and the other which uses 
experimental data. 

In summary this work is unique in several 
respects. The analysis is for the general non- 
linear case; the capability of using small 
dimensionless time steps is demonstrated ; and 
these features are coupled with the capability of 
treating non-exact data. 
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ESTIMATION NON-LINl?AIRE APPLIQUEE AU PROBLEME INVERSE DE LA 
CONDUCTION NON-LINEAIRE DE LA CHALEUR 

R&urn&--L’estimation de la temperature ou de la densite de flux de chaleur de surface, utilisant une histoire 
de la temperature mesurbe, a l’interieur d’un solide conducteur de la chaleur, est appele le problbme inverse 
de la conduction de la chaleur. Ce probleme devient non-lit&ire si les prop&%&s thermiques dependent 
de la temperature. On donne une nouvelle methode de differences linies. Elle est ba&e en partie sur les 
concepts dune technique gtnerale de rtsolution des problbmes inverses appelQ estimation non-lineaire. 

La mtthode (ou famille de methodes) estime les composantes du flux de chaleur, une a la fois, et ainsi, 
peut &tre consider&e comme une methode successive. Une autre mbthode est esquissQ pour laquelle toutes 
lea composantes du flux de chaleur sont trouvees simultantment. 

Comme il est suggerb par les dheloppements dans l’estimation non lineaire, lea coeficients de sensitivite 
peuvent etre utilids pour comprendre ces methodes. Les coefficients de sensitivite aident a indiquer que 
la mtthode successive a besoin des temperatures futures lorsque des pas de temps faibles doivent &re 
employ&s. 

Plusieurs exemples de l’emploi de la methode successive sont don& dans lea cas ou les don&es ne sont 
pas exactes. Lea resultats montrent que la m&ho& qui est plutot remarquable dans sa capacite d’extraire 
l’information sur la condition de surface a partir de mesures experimentales qui sont en retard et amorties 

par rapport a la condition de surface. 

NICHTLINEARE ABSCHjiZTUNG FUR DAS NICHTLINEARE, INVERSE 

WARMELEITUNGSPROBLEM 

Zlararmuenfassung- Die Bestimmung der OberflPchentemperatur oder der Warmestromdichte aufgrund 
der Messung einer Temperaturverteilung in warmeleitenden Kiirpem wird inverses Warmeleitungs- 
problem genannt. Dieses Problem wird nichtlinear, wenn die therm&hen Stoffgrossen temperatur- 
abhlngig sind. Ein neues Differenzenverfahren wird vorgestellt. Es basiert teilweise auf dem Konzept 
einer allgemeinen Technik filr die Lbsung inverser Probleme, such nichtlineare Abschltzung genannt. 

Diese Methode (oder Varianten dieser Methode), bei der die Komponenten des W&mestroms nach- 
einander geschatzt werden, kann als Folgeschritt-Verfahren betrachtet werden. Eine andere Methode, bei 
der alle Komponenten des WLmestroms gleichzeitig gefunden werden, ist skizziert. 

Wie die Entwicklung der nichtlinearen Abschiitzung zeigt, wird die Methode bei Verwendung der 
Einflusskoeffienten durchsichtiger. Die Einflusskoefftienten zeigen, dass beim Folgeschritt-Verfahren 
“zukiinftige” Temperaturen beniitigt werden, wear dleine Zeitschritte gew&hlt werden An mehreren 
Beispielen wird die Anwendung des Folgeschrittverfahrens erlgutert. Diese. Beisniele gelten fiir F&Be mit 
nicht genauen Daten Die Ergebnisse zeigen, dass die vorgeftihrte Methode bemerkenswerte Informationen 
iiber die Oberfliichenverhiiltnisse aus Versuchsmessungen ziehen kann, die gegentiber den OberBiichen- 

werten phasenverschoben und gedampft sind. 
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HE~~HE~H_~~ O~EH~A HE~~HE~HO~ ~~PATHO~ SA&~YIII 
TE~~O~PO~O~HO~T~ 

A.aaoTaqssJr-EnaroAapR. ~~3~lepefifio~TehlffepaT~pHo~ xapamepmTme ~Te~~onpoBo~~~eM 

TBepAOM TeJfe 06paTHafi 3aRaqa TenZlOnpOBO~HOCTIf CBOfiHTCfi K OII~e~eJIeHPIIO TeMnepaTgpbi 

flOBepXHOCTA IIJIH IIJIOTHOCTK TenJIOBOrO nOTOKa. 3Ta 3agaqa CTaHOBEfTCR HeJlklHe~HOf?, eCJfIl 

TepMWieCKHe CBOiCTBa He 3;IBMCECT OT TeMnel-'"Typb'. npJ,lBOALITCR HOBbIti MeTOR KOHeYHbIX 

pa3HOCTeti, KOTOpbfB YaCTHYHO OCHOBatl Ita nOlIRTfIRX 06merO MeTOAa pellIeHWI ObpaTHbfX 

:~a~a'iTen~OnpO~O~HOCT~l.:3TOT~lCTO~nO3~O;rHeTO~etf~ITblZ3MeHeHlfeKOMnOH@HTORTenJIOBO~O 

nOTOKa BO BbeMeHB. 

~kIIO.-Ib3yaR QJ'rOn .MeTOl~,MO?HIiO OnHOBpeMeHHO HaiiTI4 KOM~OHeHTbITenJIODOI'O nOTOKB. 

ECXOAR 113 HeJfclHeiiHOtl OI&eHHI~, KOZI$lI$ff~HeHTbl YYBCTBIITe;IbHOCTIl MOWHO HCnOZIb30BaTb 

AJIR BbIHBZeHIJR CJ'~HOCTIf 3TllX PleTOAOB. 

~03~~~~~feHTbI Y~BCTB~Te~bHOCT~ nOKa3LIBaIOT, YTO MeTOx flOCJIe~OBaTeJfbHbIX II@- 

n~~e~~itTpeSyeTcne;ge~~BopassIrtTwa~o~pe~e~~Te~nepaTypti0fononlr,ecn~~eoExo~~fMo 

~~nO~b3OBaTb He~O~b~~e Te~finepaTypfrbIeIf3MeHeHRR. 

~I~~~Bo~~Tc~ HeKOTOpble I;13 np~fMepoB np~~e~e~~~ MeToga, KoTopble COOTBeTCT~~~T 

CJI)?aF C n~~~~~~eHHb1~~ &ilfHblHI4. PeZyJIbTaTbI BblRBIIIIYI, YTO MeTOA ~e~eCOO~pa3HO 

HCIIOJfb30BaTb, fiOraa HeO6XO~JJMO IIOZJWRTb SfH@OpMa~AfQ 0 COCTORHHH lfOBepXHOCTA no 

pe3)'nbTaTaM 3KCIlepIIMeHTOB. a TawKe ;IJm cpasrrerim fI or(eHwr~ TOYHOCTLl )WlOBIlii Ha 

nOBepXHOCTM. 


