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NONLINEAR INVERSE HEAT CONDUCTION PROBLEM
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Abstract— The estimation of the surface temperature or heat flux density utilizing a measured temperature
history inside a heat-conducting solid is called the inverse heat conduction problem. This problem becomes
nonlinear if the thermal properties are temperature-dependent. A new finite-difference method is given.
It is based in part upon the concepts of a general technique for solving inverse problems called nonlinear
estimation.

The method (or family of methods) estimates the components of the heat flux one at a time and thus, may
be considered an on-line method. Another method is outlined for which all of the components of the heat
flux are found simultaneously.

As suggested by the developments in nonlinear estimation, the sensitivity coefficients can be utilized to
gain insight into these methods. The sensitivity coefficients help indicate that the on-line method requires
“future” temperatures when small time steps are to be used.

Several examples of the use of the on-line method are given. These examples are for cases with non-exact
data. The results demonstrate a method that is rather remarkable in its ability to extract information about
the surface condition from experimental measurements that lag and are damped compared to the surface

condition.

NOMENCLATURE
specific heat ;
distance from heated surface to tempera-
ture sensor ;
sum of squares function, equation (3);
upper limit for F, equation (6);
thermal conductivity;
thickness of solid ;
integer, see equation (5a);
subscript for g indicating the last known
q;
coeflicient in energy equation, (1};
heat flux density at x = 0;
volume heat source ;
small integer; f m = 1, r — 1 = no. of
“future” temperatures;
time;
temperature;
coordinate;
experimental temperature ;
thermal diffusivity ;
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n, timeindex fortand T;

8, time scale for gq;

p, density;

7,  dimensionless time;

sensitivity coefficient, equation (8b).

INTRODUCTION

IN EVALUATING new heat-shield materials, testing
of rocket nozzles and developing transient
calorimeters, it is sometimes necessary to calcu-
late the transient surface heat flux and the surface
temperature from a temperature history meas-
ured at some location inside the body. In dis-
tinction to usual transient heat conduction or
diffusion problems this one has been termed the
inverse problem. This is because the conditions
are not specified at both boundaries. If the
thermal properties are functions of temperatures
as considered in this paper, the inverse problem
becomes nonlinear.
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One of the first papers on this subject was
written by Stolz [1]. His procedure is unstable
if the time intervals are made too small. Small
time steps in the calculations are needed to
obtain more information about the surface
conditions. Much smaller time steps were found
by Beck to be possible by utilizing least squares
[2]. Other papers using least squares in quite
different ways were written by Frank [3] and
Burggraf [4]. Sparrow et al. [5] used another
approach. Using different approximations each
of these researchers except Burggraf and Frank
found the average heat flux for a succession of
short intervals. Burggraf cleverly found the
exact solution for the instantaneous surface
heat flux for given continuous temperature and
heat flux histories at a given internal point.
When Burggraf’s equation is utilized with dis-
crete or experimental data, the results are also
approximate.

Frank and Davies [6] assume an analytical
form for the time-variations of the surface heat
flux for the duration of the experiment. These
investigators do not report any problems with
stability, but their methods are not designed for
determining heat flux curves which may be
discontinuous.

None of these papers presents a method which
can conveniently heat a composite body with
temperature-variable thermal conductivity and
specific heat. An objective of this paper is to
present a method suitable for use with a digital
computer for treating such a body. In [7] a
method for the same problem is discussed which
builds on the ideas in [2]. In both [2] and [7]
the methods are not developed using the ideas
of nonlinear estimation to which they are in fact
related. Another objective then is to derive the
methods using nonlinear estimation in order to
demonstrate the applicability of nonlinear esti-
mation to determining time-dependent quanti-
ties at a boundary. By incorporating this prob-
lem into the framework of nonlinear estimation,
the analytical solution of this problem can be
improved. Furthermore, the similar problems
of determining the heat—transfer coefficient,

thermal contact conductance, mass-transfer
coefficient, etc., can be treated in an almost
identical manner.

Nonlinear estimation is not well-known by
mechanical engineers. It is presently being
actively developed by men of diverse back-
grounds who seem sometimes unaware of the
work of each other. A great deal has been con-
tributed by control and chemical engineers,
mathematicians and statisticians. Related to
nonlinear estimation are terms such as non-
linear least squares, optimization, identification,
filtering, quasilinearization and invariant im-
bedding.

VARIOUS METHODS OF SOLUTION

The linear inverse problem in conduction can
be solved using an exact method [4], integral
method [1, 2, 5] or a finite-difference method
[3, 6, 7. The only method sufficiently powerful
to solve the general nonlinear problem appears
to be the latter; hence, the discussion will
emphasize this method although the basic
concepts can be applied to the integral method.

One can use (a) a step-by-step method to
calculate the heat flux g-distribution one com-
ponent at a time [1, 2,4, 5, 7, 8] or (b) obtain the
complete g-distribution simultaneously at the
end of the procedure [3, 6]. The relative merits
of each is discussed further in later sections.

For any method given above except in {4] an
analytical form for the time-variation of ¢ must
be chosen. This choice is particularly critical for
case (b). Frank [3] suggested a polynomial
approximation of kth degree in time for 4.
Polynomials have the advantage that the com-
putational procedure is relatively simple. Severe
disadvantages of polynomials include their
inability ““to take on sharp bends followed by
relatively flat behavior” and, as the degree of a
polynomial increases, they are frequently “diffi-
cult to evaluate, i.e. being numerically unstable”
[9]. Flat bends followed by flat behavior are
relatively common for such situations typified
by starting and stopping a plasma arc heat
source. Davies [6] uses rather a complicated
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form for g involving error functions and nine
unknown coefficients. His form is difficult to
solve and may well have some of the disadvant-
ages of Frank’s method.

The determination of the heat flux simul-
taneously at the completion of a calculation,
case (b), need not be restricted to functions
which are continuous over the duration of the
experiment. The g-curve could be approximated
by an array of values of g, each corresponding to
different times, for example.

PROBLEM DESCRIPTION
The heat-conduction equation can be general-
ized as

o (, 0T oT

5;("5;)-“%“?@7“9' (
The last two terms on the right-hand side of
equation (1) relate respectively to a fluid flowing
through the solid and to the rate of production

of internal energy per unit volume. If a gas is
traveling from the rear surface (x = L, Fig. 1)
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F1G. 1. Geometry of heated body.
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toward the heated surface with a velocity v,
density p, and specific heat c,,, then P is equal
to p,c,ev. The quantities k, c,, P and Q can be
temperature- and space-variable.
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The problem is to calculate the heat flux
q(0, t) given the temperature history at x = E,
Fig. 1. For convenience assume the boundary at
x = L is insulated ; any other known boundary
condition could be used, however. Mathematic-
ally the boundary and initial conditions are

T(Ea t) = Y(t)a (za)

oT(L, t) ~o, (2b)
dx

T(x,0) = T{x). {2c)

The temperatures Y{t) and T{x) are known. The
unknown surface heat flux ¢(0, t) and surface
temperature T(0, f) are simultaneously found
while calculating the temperature distribution
in the body.

The numerical solution of equations (1) and
(2) can be accomplished by using a number of
finite-difference approximations. A backward-
difference formulation is given in [7]. See also
Ames [10]. The problem from x =Eto x = L
can be solved in a straightforward manner
because the boundary conditions are known at
each boundary. The solution of the complete
problem from x =0 to L cannot be readily
obtained because the boundary condition is not
given at x = O but rather an interior temperature
history is given ; because the boundary condition
is to be determined, the problem is the inverse of
the usual one.

Difficulties arise in determining the surface
heat flux or temperature from the physics of the
problem. That is, the temperature response at
any interior location is damped and delayed
(in effect) with respect to the heated surface [7].
As one seeks to determine the structure of
q(0, t) more finely (i.c. using smaller time incre-
ments), the effect of the physics is to make the
calculation more sensitive to errors. The exact
solution of Burggraf for the linear case can be
used to show that as the time steps are made
smaller, higher and higher orders of time
derivatives of the measured temperature Y(f)
and of the heat flux at x = E become dominant.
Note that these derivatives must be taken for



706

discrete experimentally measured data; this can
only be approximated by replacing the deriva-
tives by differences.

A limit on the minimum size of the time incre-
ments is sometimes caused by the stability of
the numerical procedure. Using some pro-
cedures, for example [1], this minimum per-
missible time step may be too large to extract
all the useful information out of the data.
Stable procedures can be devised, however, to
permit passing to even smaller time steps. Since
the information contained in the data is finite,
it is not necessary to present a procedure which
is stable as the time steps go to zero.

It can be readily verified from the Burggraf
solution or the discussion in [7] that the heat
flux at the instant ¢ is dependent upon tempera-
tures at x = E at times greater than t. Hence, in
determining ¢(0, ¢), any effective procedure
would utilize temperatures at times greater than
t. Nonlinear estimation permits one to do this
in an effective manner.

NONLINEAR ESTIMATION PROCEDURE
FOR SINGLE 4
In the nonlinear estimation procedure one
minimizes the sum of squares function
I
F(cj) = 'Zl (T;ﬁi - Yy'+i)2 (3)
=
with respect to some parameters describing
g(0, £). Rather than approximating ¢(0, t) as a
function continuous in time such as a power
series, g will be represented by a vector of
elements 4, (4;, 43, ---, gy) which is more
flexible and powerful. The simplest way to
approximate g(0, 1) with these g, is to let each
one represent a step; that is

4(0, 1) = 4, )

Figure 2 shows a typical ¢(0, ¢) approximated
with some g, The Y, values are measured
temperatures at (E, t,.;). The temperature
T,+: is calculated using a finite difference
solution for equation (1) with appropriate

boundary and initial conditions. (The method of

for 8,_, <t<8,
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FI1G. 2. Approximation of heat flux by discrete values of q.

determining the boundary condition at x = 0
is discussed below.) T, ., is also for time ¢, , ; and
position x = E.

The subscripts on g and T (or Y) do not have
the same meaning although both refer to time.
A reason for this is that one might decide to
calculate fewer values for g (ie. N) than the
number of temperature measurements. That is,
the time steps for T, Y and g are respectively
At, At and A6 which are related by

A6 = mAt, mis an integer. (5a)
Thus, 6, and t, are referring to the same time if
mM = n. (5b)

(Actually a time step smaller than At might be
used for improving the accuracy in calculating
T, but only those T-values occurring at times
at which Y-values are available would be
introduced into the sum of squares.) For the
special case of m = l—same number of g,’s as
T,s—{(5b} gives n = M. Figure 3 shows T ,;
as a function of # + i; also shown in an » axis
form = 2.

The following discussion in this section refers
to determining one g, at a time. Assume that
41> 42, - - - » i are known. In (3) let

(6)

where r is some small integer like 1, 2, 3 or 4.
The objective is to calculate g,, ., using temp-
eratures 7,4, T4z, ..., T4, (Which are pro-
duced during the time interval associated with

I=mr
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7 7+l 7+4 7+
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M M+l M+2

FiG. 3. Temperatures T, ,; shown as a function of ¢, ; and
0,form=2.

qum+1) plus the temperatures T, i1, ..., Tpyp
The latter temperatures might be called “future”
temperatures.

For temperature-variable properties, the
problem of determining q,,, , is nonlinear, but
it can be solved by using iteration with a linear
approximation. A key assumption used tem-
porarily is to let

dM+2 = AM+3 = - = 4dM+r = dm+1 @)

which sets some future ¢’s equal to g, ;. (This
assumption is examined below.) Then for the
Ith iteration the Taylor series approximation

oT! ;! _
6‘15\::1 (qil+1 — qm+1)

is used. This expression is exact (hence, iteration
is not needed) if the temperature problem is
linear. The ! superscript is an index related to
the number of iterations. For | = 0, an estimate
of g% . , is the converged value of q,,. For g9 one
can use the value of unity.

The partial derivative in (8a) is frequently
called a sensitivity coefficient. It can be calcu-
lated using
g1 = ot

Op+1
~ ’Tr,+i(qlb;-:1 (1+¢)— ’I;,+1(qlb;—ll
- Edhr+1

! -1
Thvi~ Tyyi +

(8a)

(8b)

where ¢ is some small number such as 0-001. For
convenience, the notation for the senmsitivity
coefficient ¢!~ ! given in (8b) does not contain
either M or n; it is true, however, that ¢!~ ! is
independent of M (or #) and [ for the linear
problem.

Introducing (8a) in (3), differentiating with
respect to qi.; gives for the correction in

qgun
3 1
3 (= THD G
Vi1 = — T (9a)
Y (91
i=1
where

(9b)

If the thermal properties are temperature-
independent (linear problem), the maximum
value of ! is unity; for a nonlinear problem
frequently / =1 or 2 would be satisfactory.
More generally, the iteration on [ using (9a)
could continue until, say

I ! -1
Vam+1 = dm+1 — du+1-

!
Vam+1
=1
dM+1

< 0-005.

(9¢)

The iterative use of (9a) result in the calculation
of gy+, which then provides a conventional
boundaryconditionatx = Oforfy <t < Oy,

Several special cases can be obtained from
(9a). One such case is for m = 1; thus,

Af = At (9d)

and the subscripts of g and T when equal refer
to the same instant. Then (9a) becomes

3. (e — Tk o7

ngun = (10)

¥ @y

This result is analogous to equation (9a) in
[7]. For r =1 (no future temperatures used),
least squares would not have been needed. For
r > 1, future temperatures are used.
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Another special case obtained from (9a) is
for r=1 and thus, I =m. In this case no
“future” temperatures are used but the above
procedure is needed to obtain the result if
m > 1. The expression obtained in this case is
analogous to equation (6) of [11] which gives a
method for determining the heat-transfer co-
efficient or contact conductance from transient
temperatures in a solid. The time interval
associated with ¢, which is A8 should be larger
when no future temperatures are used than when
r=2or3.

If several thermocouples are used to calculate
the surface heat flux, then exactly the same
procedure may be followed. The only difference
would be that the summation in {(93) would be
replaced by a double summation over time and
thermocouples.

A careful investigation of the sensitivity
coefficients often can aid in providing insight
into the problem of determining parameters
using nonlinear estimation. For this reason ¢;
will be examined. One of the desired characteris-
tics of a sensitivity coefficient in parameter
estimation problems is that the magnitude of
the coefficient be as large as possible. If there
are two or more parameters to be found at one
time, then in addition the sensitivity coefficients
should be as uncorrelated as possible [1].

For convenience in this analysis relating to
the sensitivity coefficients, the properties will
be assumed to be constant. Using the method
given in [11] it can be shown that

¢F = ‘1M+1ﬂ’l‘i = Glx, t,4; — 1)
Odpm+1
where G(x, t) is the temperature rise in a body
due to a unit step change in ¢(0, ¢) at time ¢,
Equation (11) applies quite generally; it is valid
for any one-dimensional problem (with P and
Q = 0 and temperature-independent k and c)
including finite and semi-infinite bodies, radial
and spherical geometries, and composite bodies
arranged to permit one-dimensional heat flow.
To utilize (11) consider a homogeneous, plane
one-dimensional body hested at x = 0 and

(11)
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insulated at x = L. The solution for a step
change in ¢ is well known [12] and is shown in
Fig. 4. Observe the character of the curve for
x = 0; the sensitivity coefficient immediately
begins to rise at t; — t, = 0. Hence, thermo-
couples placed at the surface are immediately
responsive to changes in the surface heat flux,

07"

B e AL B i

/

[oR %7 =0 k

05+

g’ O4ar /
Tyur L% (
0-3r 4

x/L=1
o2r
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0

0 0l 02 03 04 05 06
realt-t s

F1G. 4. Dimensionless sensitivity coefficients for step change
in ¢ as a function of time.

On the other hand, for any interior location
there is a lag in the response of ¢F. It is clear that
if the sensitivity coefficients are very small, as
for x/L = 1 for

= 9‘97-{"—) < 0:06 (12)
that from (8a) T, ; is relatively independent of
qum+1 and further that difficulties are going to
arise using (9a). These difficulties probably will
manifest themselves as oscillations in the cal-
culation.

To be more specific, (9a) for this case can be

written form = 1

e

Yagri — Ty &F

#

\ I - =t

M+ 1

(13)

T @
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Let At = 005 be the time interval for g, , and
let m = 1. Then ¢ = 0:0002, ¢3 = 0-0078 and
¢ =00294 for qL/k=1 F° and x/L = 1.
Since ¢ is much smaller than ¢% or ¢%, much
more information relative to g, , (which is
applied, in terms of Fig. 4, from t = 0 to At) is
obtained after = At than before this time. In
Fig. 5 shown by the dots are some values of
¢ for At = 0:05, 0-1 and 0-2 for this case.

o7

06r /

05t

gr o4

k)

o2t

Ot

Fi1G. 5. Dimensionless sensitivity coefficients as a function of
the index i for various yalues of Az. Dots are for step change
in g and crosses are for ¢ shown in inset.

Some insight into the validity of the temporary
assumption of constant g given by (7) can also
be obtained from Fig. 5. Suppose rather than (7)
one lets temporarily

(14

The analysis for ¢, would proceed exactly in
the same as above to obtain (9a) and (13). The
only difference would be in the value of the
sensitivity coefficient, ¢}. For this assumption
¢} is proportional to the partial derivative of T
with respect to a unit g of the shape and duration
shown in the inset of Fig. 5. The ¢¥’s for this
case are shown by the crosses in Fig. 5. Note
that in each case, ¢ is identical in magnitude for
both assumptions, (7) or (14). For other ¢}’s the
values for a given At tend to be close together
for small i’s coupled with small values of Az.

Ar+2 = Am+3 = - = qp+, = 0.
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Now the numerical procedure culminating in
(9a) and (13) is developed especially for small
Ar’s and is intended for use with relatively small
values of i or more appropriately r. In Table 1
under the constant g column, r values are given
which are recommended on the basis that the
assumptions given by (7) or (14) yield about the
same ¢ values and thus g,’s.

Tuble 1. Recommended r values for constant and linear q
assumptions for measurements at the insulated surface of a

plane wall
r
At Const. g Linear ¢q
0-05 3 4
(13 2 4
02 1 3
0-4 0
Linear q

The above analysis for constant g over At can
be modified to a linear g assumption. Let g
temporarily for 6y, < t < 6., be given by

Om+s — t t— Oy

Auer 55—
0
M+1

“ M

This assumption is analogous to that given by
equation (7). Note that ¢ = gy, at ¢t = 6, and
g = qp 4, att = 8, . In this case one assumes
that g,, is known and g,,., is to be found. With
only a difference in the values of the ¢,’s, one
can derive an identical expression to (9a) for
this case.

For the g-condition given by (15) one can
again derive (11) for the restriction given
immediately below the latter equation ; the only
difference is that now G(x, t,,; — t,) represents
the temperature rise for a g which is zero at ¢,
and then increases linearly with time and reaches
unity at t,,,. Figure 6 shows some sensitivity
coefficients for this case. A comparison of these
values with those in Fig. 5 which are for the
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constant g assumption shows that the “linear”
¢;’s are smaller for several time steps; in fact
for At = 005 the “constant” ¢}’s are larger
until i = 4. This means that the number of
“future” temperatures should always be greater
for linear g than the constant g assumption. In

o6}
0-5r

¢/’ 0-4l

M+l

F1G. 6. Sensitivity coefficients for case of linear variation of
g with time.

Table 1 are given some r-values that the linear g
case must reach in order to equal or exceed the
¢} values for the constant g assumption. If the
same r-values are used for both approximations
one finds that the linear g results tend to
oscillate more than the constant g results.
Depending upon the accuracy of the data, it
might be necessary to use larger r values than
given in Table 1. This is required when the data
is rather inaccurate and is not “‘smooth”. This
is discussed further in connection with the
examples. Also, it is sometimes necessary to use
r > 1 when the thermocouple is located at the
heated surface (at/x? — o0) in order to reduce
the oscillations in the values of ¢ calculated.
Then the least squares procedure provides a
linear filter (when the problem is linear) [13].

NONLINEAR ESTIMATION PROCEDURE FOR
SIMULTANEOUS DETERMINATION OF ¢(1)
The procedure for the simultaneous deter-
mination of all the g, values describing g(z) is

JAMES V. BECK

similar to that for one g,. One minimizes

(T, - ¥)? (16a)

™~

F@) =

i=1
where I now is

[=mN (16b)

and N is the number of g values and m is defined
by (5a). T; is approximated analogous to (8a) and
the method can be developed directly. Since the
resulting expression is not recommended, the
details are not given. A close examination of this
method indicates that the computer time usually
will be much greater than the recommended
method and that severe stability problems might
be encountered. Further discussion of this
method is available in an expanded version of
this paper available from the author.

EXAMPLES

In the two examples the Crank—Nicolson
finite-difference approximation is used since it
is quite accurate. For results with other finite-
difference approximations see [7]. Also, in both
examples, the time step for the data (At) and for
the heat flux density (Af) are equal, ie. m = 1
in equation (5). In both cases the properties
were assumed to be constant and hence the
problems are linear; for these cases similar
results would be otained for temperature-
variable thermal properties although the com-
puter time would increase. The computation
time depends upon the number of future time
steps (r — 1, for m = 1); the computer time will
be approximately 2r + 1 times that for a known
boundary condition. The time for most of these
cases is about 10-20 s of CDC 3600 time.

“Exact” data for triangular heat flux

The same case of heat flux triangular in shape
considered in [7] will be considered here.
Unfortunately, the results in [7] show a small
lag due to a programming error.

A plate of thickness L is heated at x = 0 and
insulated at x = L. The exact temperatures at
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these locations are shown in Fig. 7. The heat
flux is linear from 1 = at/I? = 0 to 06,

qlt) = g,t

where g, is a constant; ¢ is shown as the solid
line in Fig. 8.

A number of calculations have been per-
formed for this case using as the input the temp-
erature history at the insulated surface. In order

05 . T

0 o2 04 06 08 10 12

r

F16. 7. Temperatures at heated surface and insulated surface
for finite plate heated by triangular heat flux.
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Fic. 8. Calculated heat flux for data used at x/L = 1 with
Ar = 0-04. Calculation performed with At = 0-02 and one
future temperature {r = 2) used.
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to simulate an experimental case with measure-
ment errors, the temperatures are not introduced
as exact numbers; instead the temperatures are
truncated at three decimal places with the
maximum temperature being 0-34 as shown in
Fig. 7. The errors in the temperatures then vary
from —0-001 to 0 or —~0-3 to 0 per cent of the
maximum temperature rise. The temperatures
are introduced at At = aAt(I? = 0-04 intervals,
and the first five T’s corresponding to 0, 004,
0-08, ... are 00, 0-0, 00, 0-0 and 0-001. The exact
temperature at 7 = 0-12 is 0-000374 whereas 0-0
is used; thus the error in the temperature at
that time is — 100 per cent of the true tempera-
ture. Hence, for the early times the errors in the
temperature data seem to be relatively large.
For this example the results were not sensitive
to the number of spatial nodes greater than 20 or
calculational time steps smaller than 0-04. The
number of future temperatures was very import-
ant with no future temperatures being unstable
{r = 1), one future temperature {r = 2) quite
oscillatory (as shown by Fig. 8), and two and
three future temperatures (r = 3, 4) quite satis-
factory as shown in Fig. 9. It appears that three

o8l /+
oo Ve
. A
~r /
; L3
/ y
oalb /f,* A,
*\, +
g *
= 7+ \
% o3 i %
! \
?' +\' +
ozt / A,
*
/+ \
W 2 ftuture temp.{r=3) :\
Ot - /S * 3 future temp. (r =4) ‘\f
] +
J A\
1 1 i i i 1
o 02 04 06 o8 10 e

T

F16. 9. Calculated heat flux using two and three future
temperatures at x/L = 1 with data given at At = (-04.
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future temperatures are better than two. It is
rather remarkable that the heat flux for the first
interval (plotted at Az/2) is as accurate as it is
using the first three future temperatures 0-0, 0-0
and 0-001 which are quite inaccurate.

The heated surface temperature is less oscil-
latory and more accurate than the surface heat
flux. This is illustrated by Fig. 10 showing the

S

0

05+ {

q L7k

~4.
70,107 f ;
a 03¢

o2 I

O

©6" 02 o0a 06 08 10 2

T
F1G. 10. Calculated surface temperature (x = 0) using one
future temperature at x/L = 1 with data given at At = 0-04.
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surface temperature calculated with one future
temperature {r = 2) and Fig. 8 showing the
associated g(t).

Experimental case

An experiment has been run with a copper
block initially at 439°K and an aluminium
block at 297°K. The blocks were suddenly
brought into intimate contact by a hydraulic
system. A thin film of water was placed initially
on the aluminium surface to improve the contact
between the blocks.

The measured temperatures are shown in
Fig. 11. Thermocouples are located at 0-00317,
0-00635 and 00317 meters from the heated
surface of the aluminium block and 0-00317
meter from the surface in the copper block.
Measurements were made at 0-2 s intervals. In
the aluminium block the dimensionless numbers
aAt/E?, where At = 0-2 second and E is 0-00317,
0-00635 and 0-0317 meters, are equal to about
1-0, 025 and 001. Because 0-01 is so small,
measurements were used at At = 0-6 and are so

450
.I.
L]
425
o 0:00317m from interface in copper block
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Time, s

Fic. 11. Experimental temperature data for copper and
aluminium blocks in contact.
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shown in Fig. 11 this gave aAt/E? ~ 0-03 which
is still a little small.

It should be stated that the analytical validity
of this method should not be judged mainly on
the results of this example because these depend
upon the experimental techniques, values of
thermal properties, etc. On the other hand a
satisfactory technique must provide the capa-
bility of treating data of reasonable accuracy.

Depicted in Fig. 12 are the ¢’s calculated for
the aluminium block. The agreement between
the results from the three thermocouples is very
good. The 000317 m thermocouple (xAt/E* ~ 1)
should not theoretically need any future temp-
eratures. The results for this case are shown as
dots in Fig. 12 and the results for one future
temperature by crosses. The former case tends
tobe more ‘“‘rough’ but might give more accurate
results near 0-9 s. The 0-00635 m thermocouple
(aAt/E? ~ 0-25) with one future temperature is
shown by the triangles in Fig. 12 and gives
results very close to those for the first thermo-
couple.

The instant the specimens come together is
not known but may be between 0-3 and 05 s.

If the contact were perfect, the heat flux would go
to infinity at the instant of contact and then
decrease rapidly. This is approximated to a
limited extent.

For a rapid variation of the heat flux density
such as near 09 s, the time intervals for the
temperature measurements should be small
compared to the period of the variation.
Perhaps the 000317 m thermocouple could
have had smaller time steps and then yielded
more detail. The g-results obtained from the
0-0317 m thermocouple illustrate the impossi-
bility of accurately calculating the surface flux
at times when the time steps for g are on the
same order as the period of a rapid variation in
g. See the curve in Fig. 12 with the open circles
which is for At = 0-6 and three future tempera-
tures. The time step A@ for this case cannot be
reduced to 02 s without using an excessive
number of future temperatures.

The heat flux entering the aluminium block
should be that leaving the copper block even
though there is a resistance to heat flow at the
interface. This is verified experimentally by
comparing g shown in Fig. 13 (which is for the

4
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Fi1G. 12. Calculated heat flux using different thermocouples
in the aluminium block.
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FI1G. 13. Calculated heat flux using temperatures in copper
block.

copper block) with the ¢’s of Fig. 12. No future
temperatures are used in Fig. 13, and none are
required from the value of aAt/E? ~ 2; some of
the roughness of the g-curve would be removed
with one future temperature, however.

SUMMARY AND CONCLUSIONS

A new numerical different method is given
for the nonlinear inverse heat conduction
problem. It utilizes the concepts of non-linear
estimation. This method may be considered an
on-line method since the components of the
heat flux are estimated one at a time. A second
method is suggested for which all the components
of g are found simultaneously.

The sensitivity coefficients can be used to
gain insight into these methods. In particular,
the sentivity coefficients help indicate that the
method for determining one ¢q at a time requires
“future” temperatures and further give some
insight into the number of future temperatures
required.

Examination of the two methods indicates
that the single-q method is generally superior.
This is significant because several researchers

have suggested using some modification of
determining the complete g-curve at one time.

In contrast with many previous solutions of
the inverse problem, the present analysis clearly
demonstrates the capability to treat experimental
data. This is demonstrated by two examples,
one for which the approximate data was
generated analytically and the other which uses
experimental data.

In summary this work is unique in several
respects. The analysis is for the general non-
linear case; the capability of using small
dimensionless time steps is demonstrated; and
these features are coupled with the capability of
treating non-exact data.
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ESTIMATION NON-LINEAIRE APPLIQUEE AU PROBLEME INVERSE DE LA
CONDUCTION NON-LINEAIRE DE LA CHALEUR

Résumé—L estimation de la température ou de la densité de flux de chaleur de surface, utilisant une histoire
de la température mesurée, & I’intérieur d’un solide conducteur de la chaleur, est appelé le probléme inverse
de la conduction de la chaleur. Ce probléme devient non-linéaire si les propriétés thermiques dépendent
de la température. On donne une nouvelle méthode de différences finies. Elle est basée en partie sur les
concepts d’une technique générale de résolution des problémes inverses appelée estimation non-linéaire.

La méthode (ou famille de méthodes) estime les composantes du flux de chaleur, une a la fois, et ainsi,
peut étre considérée comme une méthode successive. Une autre méthode est esquissée pour laquelle toutes
les composantes du flux de chaleur sont trouvées simultanément.

Comme il est suggéré par les développements dans ’estimation non linéaire, les coefficients de sensitivité
peuvent étre utilisés pour comprendre ces méthodes. Les coefficients de sensitivité aident 4 indiquer que
la méthode successive a besoin des températures futures lorsque des pas de temps faibles doivent étre
employés.

Plusieurs exemples de I'emploi de la méthode successive sont donnés dans les cas ol les données ne sont
pas exactes. Les résultats montrent que la méthode qui est plutSt remarquable dans sa capacité d’extraire
I'information sur la condition de surface 4 partir de mesures expérimentales qui sont en retard et amorties

par rapport 4 la condition de surface.

NICHTLINEARE ABSCHAZTUNG FUR DAS NICHTLINEARE, INVERSE
WARMELEITUNGSPROBLEM

Zusammenfassung-— Die Bestimmung der Oberflichentemperatur oder der Warmestromdichte aufgrund
der Messung einer Temperaturverteilung in wirmeleitenden Korpern wird inverses Wirmeleitungs-
problem genannt. Dieses Problem wird nichtlinear, wenn die thermischen Stoffgrossen temperatur-
abhingig sind. Ein neues Differenzenverfahren wird vorgestellt. Es basiert teilweise auf dem Konzept
einer allgemeinen Technik fiir die Lsung inverser Probleme, auch nichtlineare Abschédtzung genannt.

Diese Methode (oder Varianten dieser Methode), bei der die Komponenten des Warmestroms nach-
einander geschitzt werden, kann als Folgeschritt-Verfahren betrachtet werden. Eine andere Methode, bei
der alle Komponenten des Wirmestroms gleichzeitig gefunden werden, ist skizziert.

Wie die Entwicklung der nichtlinearen Abschitzung zeigt, wird die Methode bei Verwendung der
Einflusskoeffizienten durchsichtiger. Die Einflusskoeffizienten zeigen, dass beim Folgeschritt-Verfahren
“zukiinftige” Temperaturen bendtigt werden, wenn dleine Zeitschritte gewahlt werden. An mehreren
Beispielen wird die Anwendung des Folgeschrittverfahrens erldutert. Diese Beispiele gelten fiir Filie mit
nicht genauen Daten. Die Ergebnisse zeigen, dass die vorgefiihrte Methode bemerkenswerte Informationen
iiber die Oberflichenverhiltnisse aus Versuchsmessungen ziehen kann, die gegeniiber den Oberflichen-

werten phasenverschoben und geddmpft sind.
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HEJUHEAHAA ONEHKA HEJWHENHON OBPATHON 3A/1AYU
TEIIJIOIIPOBGJHOCTHN

AnHotanua—baarogapa usMepeHHON TeMIepaTYPHON XaparTePUCTHRE B TEMIONPOBORALIEM
TBEPAOM Tejle 06paTHad 3ala4a TeILIOIPOBOZHOCTH CBOFHMTCH K ONpefelleHHI0 TeMIIepaTyphl
TIOBEPXHOCTH MJIN ILIOTHOCTH TETJIOBOTO IMOTOKA. JTA 3aja4a CTAHOBMTICH HeJMHeHOM, ecian
TepMUYECKUE CBOCTBA HE 3aBUCAT OT TeMIeparypbl. [IpMBOXUTCA HOBBLY METOJ KOHEYHBIX
pasHocTelf, KOTOPEIA 4YaCTUYHO OCHOBAH Ha IOHATUAX OCIIEro MeTONA pelleHMA OOpaTHHIX
Aafa4 TeMJIONPOBOTHOCTH . DTOT METON TI03R0IAET OLEHUTD H3MeHeHIEe KOMIIOHEHTOB TeILIOBOT0
TOTOKA& BO Bb€MEHH.

Henoaesyaa Apyroit MeToq, MOMKHO OJHOBPEMEHHO HANHTH KOMIIOHEHTH TeIJIOBOTO MOTOKE,

Hexonga n3 nenmueRHON OueHKY, KOIQOUIMEHTH YYBCTBUTEILHOCTH MOMKHO UCMOIb30BAThL
AJA BHABIEHUA CYHMIHOCTH 3THX METOROB,

HoadpunuenTsr 4yBCTBUTEIHPHOCTH TNOKA3BIBAT, YTO METOX TOCHEIOBATENbHBIX npul-
auskennit TpefyeT cBegeHuH 0 Pa3BUTHH BO BpEMEHNU TEMTIEPATYPHOTO NOJIA, ecit HeoGXOUMO
HCTIOJB30BATL HeGOIBIINEe TeMnepaTypr{e HU3MEeHeHHud,

IlpuBogATCA HEKOTODHE U3 NPHUMepOB NPUMEHEHUS MeTOJA, KOTODHE COOTBETCTBYIOT
cayuas ¢ NpUGTVKeHHBIMU JaHaMMu. PeayapTaTel BHIABHIU, YTO MOTOJ lenecoo(pasHo
UCNOJAB30BATh, KOTAR HeoOXOAMMO HOAYYNTh HHPODPMALMIO O COCTOSHMH TNOBEPXHOCTH IO
pesyibTaTaM SHCIEPHMMEHTOB, 4 TakKe JJIA CPABHEHWA M ONEHKH TOYHOCTM YCAOBHMH Ha

TTOBEPXHOCTH.



